16 research outputs found

    Ontogeny of Numerical Abilities in Fish

    Get PDF
    Background: It has been hypothesised that human adults, infants, and non-human primates share two non-verbal systems for enumerating objects, one for representing precisely small quantities (up to 3–4 items) and one for representing approximately larger quantities. Recent studies exploiting fish’s spontaneous tendency to join the larger group showed that their ability in numerical discrimination closely resembles that of primates but little is known as to whether these capacities are innate or acquired. Methodology/Principal Findings: We used the spontaneous tendency to join the larger shoal to study the limits of the quantity discrimination of newborn and juvenile guppies. One-day old fish chose the larger shoal when the choice was between numbers in the small quantity range, 2 vs. 3 fish, but not when they had to choose between large numbers, 4 vs. 8 or 4 vs. 12, although the numerical ratio was larger in the latter case. To investigate the relative role of maturation and experience in large number discrimination, fish were raised in pairs (with no numerical experience) or in large social groups and tested at three ages. Forty-day old guppies from both treatments were able to discriminate 4 vs. 8 fish while at 20 days this was only observed in fish grown in groups. Control experiments showed that these capacities were maintained after guppies were prevented from using non numerical perceptual variables that co-vary with numerosity. Conclusions/Significance: Overall, our results suggest the ability of guppies to discriminate small numbers is innate and i

    Fish Intelligence, Sentience and Ethics

    Get PDF
    Fish are one of the most highly utilised vertebrate taxa by humans; they are harvested from wild stocks as part of global fishing industries, grown under intensive aquaculture conditions, are the most common pet and are widely used for scientific research. But fish are seldom afforded the same level of compassion or welfare as warm-blooded vertebrates. Part of the problem is the large gap between people’s perception of fish intelligence and the scientific reality. This is an important issue because public perception guides government policy. The perception of an animal’s intelligence often drives our decision whether or not to include them in our moral circle. From a welfare perspective, most researchers would suggest that if an animal is sentient, then it can most likely suffer and should therefore be offered some form of formal protection. There has been a debate about fish welfare for decades which centres on the question of whether they are sentient or conscious. The implications for affording the same level of protection to fish as other vertebrates are great, not least because of fishing-related industries. Here, I review the current state of knowledge of fish cognition starting with their sensory perception and moving on to cognition. The review reveals that fish perception and cognitive abilities often match or exceed other vertebrates. A review of the evidence for pain perception strongly suggests that fish experience pain in a manner similar to the rest of the vertebrates. Although scientists cannot provide a definitive answer on the level of consciousness for any nonhuman vertebrate, the extensive evidence of fish behavioural and cognitive sophistication and pain perception suggests that best practice would be to lend fish the same level of protection as any other vertebrate

    Aggregating behaviour in invasive Caribbean lionfish is driven by habitat complexity

    Get PDF
    Caribbean lionfish (Pterois spp.) are considered the most heavily impacting invasive marine vertebrate ever recorded. However, current management is largely inadequate, relying on opportunistic culling by recreational SCUBA divers. Culling efficiency could be greatly improved by exploiting natural aggregations, but to date this behaviour has only been recorded anecdotally, and the drivers are unknown. We found aggregations to be common in situ, but detected no conspecific attraction through visual or olfactory cues in laboratory experiments. Aggregating individuals were on average larger, but showed no further differences in morphology or life history. However, using visual assessments and 3D modelling we show lionfish prefer broad-scale, but avoid fine-scale, habitat complexity. We therefore suggest that lionfish aggregations are coincidental based on individuals’ mutual attraction to similar reef structure to maximise hunting efficiency. Using this knowledge, artificial aggregation devices might be developed to concentrate lionfish densities and thus improve culling efficiency

    Three-Dimensional Neurophenotyping of Adult Zebrafish Behavior

    Get PDF
    The use of adult zebrafish (Danio rerio) in neurobehavioral research is rapidly expanding. The present large-scale study applied the newest video-tracking and data-mining technologies to further examine zebrafish anxiety-like phenotypes. Here, we generated temporal and spatial three-dimensional (3D) reconstructions of zebrafish locomotion, globally assessed behavioral profiles evoked by several anxiogenic and anxiolytic manipulations, mapped individual endpoints to 3D reconstructions, and performed cluster analysis to reconfirm behavioral correlates of high- and low-anxiety states. The application of 3D swim path reconstructions consolidates behavioral data (while increasing data density) and provides a novel way to examine and represent zebrafish behavior. It also enables rapid optimization of video tracking settings to improve quantification of automated parameters, and suggests that spatiotemporal organization of zebrafish swimming activity can be affected by various experimental manipulations in a manner predicted by their anxiolytic or anxiogenic nature. Our approach markedly enhances the power of zebrafish behavioral analyses, providing innovative framework for high-throughput 3D phenotyping of adult zebrafish behavior

    Incidental sounds of locomotion in animal cognition

    Get PDF
    The highly synchronized formations that characterize schooling in fish and the flight of certain bird groups have frequently been explained as reducing energy expenditure. I present an alternative, or complimentary, hypothesis that synchronization of group movements may improve hearing perception. Although incidental sounds produced as a by-product of locomotion (ISOL) will be an almost constant presence to most animals, the impact on perception and cognition has been little discussed. A consequence of ISOL may be masking of critical sound signals in the surroundings. Birds in flight may generate significant noise; some produce wing beats that are readily heard on the ground at some distance from the source. Synchronization of group movements might reduce auditory masking through periods of relative silence and facilitate auditory grouping processes. Respiratory locomotor coupling and intermittent flight may be other means of reducing masking and improving hearing perception. A distinct border between ISOL and communicative signals is difficult to delineate. ISOL seems to be used by schooling fish as an aid to staying in formation and avoiding collisions. Bird and bat flocks may use ISOL in an analogous way. ISOL and interaction with animal perception, cognition, and synchronized behavior provide an interesting area for future study
    corecore